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1. Introduction 

The Alekseevski-Tate equations (1) have long been employed to predict the penetration of 
kinetic energy penetrators or rod-like projectiles.  Typically, these equations are solved by 
straight-forward numerical integration techniques or by using the exact solution developed by 
Walters and Segletes (2) and refined by Segletes and Walters (3).  However, due to the nonlinear 
nature of these equations, the exact solution yields penetration only as an implicit function of 
time.  It is desirable to obtain an exact, albeit approximate, solution to these equations which 
would yield the pertinent variables, penetration velocity, penetrator length, penetrator velocity, 
and penetration as an explicit function of time.  The analytical nature of the solutions would 
clearly reveal the interplay of the various terms in the governing equations on the solutions.  
Toward this end, as per references (1–2), a perturbation solution was obtained for the following 
equation set: 

 ( )( ) ( ) TTPP RuYuv +=+− 22 22 ρρ  (1) 

 
P

P

l
Y

dt
dv

ρ
−

=  (2) 

 vu
dt
dl

−=  (3) 

 
dt
dpu =  or ∫= udtp  . (4) 

In these equations, v is the penetrator velocity, u is the penetration velocity, p is the penetration, 
l is the penetrator length, t is the time after impact, RT is the target strength term, YP is the 
penetrator strength term, ρ represents the density, where the subscript P stands for penetrator and 
subscript T represents the target.  First, the equations are normalized and the method of 
normalization will depend on the input conditions; namely, the ρ values, the initial velocity, and 
the strength terms.  For the usual case of interest to ballisticians studying kinetic energy 
penetrators impacting armor targets, the following normalization parameters are introduced: 

 iVvV = ,  iVuU = ,  Ll=λ ,  tβτ = , and (5) 

 PT ρρµ =2 ,  
L
iV

⎟
⎠

⎞
⎜
⎝

⎛
+

=
µ

µ
β

1
,  

P

PT

Y

YR −
=α ,  2

iV

Y

P

P

ρ
ε = ,  L

pP =  , (6) 

where Vi is the impact velocity, L is the initial penetrator length, and V, U, P, λ, and τ  are the 
dimensionless variables, while µ ,α, β, and ε are the dimensionless constants.  The parameter β is 
used to normalize the time.  The constant ε is the perturbation parameter.  This is the same 
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normalization scheme used by Forrestal et al. (4).  Forrestal et al. assumed RT = 0 (i.e., 1−=α ) 
for a steel projectile impacting a foundry core target (silica sand) at 3.0 km/s. 

Thus, the normalized equations become 

 ( ) 222 2 UUV µαε =−−  , (7) 

 ⎟
⎠

⎞
⎜
⎝

⎛ +
−=

µ

µ

λ

ε

τ

1

d

dV  , (8) 

 ( )VU
d

d
−

+
= ⎟

⎠

⎞
⎜
⎝

⎛
µ

µ

τ

λ 1  , (9) 

and 

 ∫⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

τ

τ
µ
µ

0

1 UdP . (10) 

The perturbation method, as shown by Cole (5), involves letting 

 .............3
3

2
2

10 ++++= VVVVV εεε  (11) 

 .........3
3

2
2

10 ++++= UUUUU εεε  (12) 

 .............3
3

2
2

10 ++++= λελεελλλ  (13) 

 ..............3
3

2
2

10 ++++= PPPPP εεε  (14) 

and the perturbation parameter  12 <<=
iV

Y

P

P

ρ
ε   is chosen. 

For example, if a third-order perturbation solution is obtained, terms of the order of ε to the 
fourth power are neglected.  Hence, the accuracy of the solution depends on the magnitude of ε 
and the number of terms in the above equation set. 

One can substitute the expressions for V, U, λ, and P (equations 11–14) into the nondimensional 
equation set (equations 7–10) and obtain, to order zero (considering only terms involving ε0) , the 
following set: 

 ( ) 2
0

22
00 UUV µ=−  , (15) 

 00 =
τd

dV
 , (16) 

and 

 ( )00
0 1

UV
d

d
−

+
−= ⎟

⎠

⎞
⎜
⎝

⎛
µ

µ

τ

λ
 , (17) 

where the initial conditions at 0=τ  are 
0

V (0) 1= , 
0

(0) 1λ = . 
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The solution is 

 10 =V  , (18) 

 
µ+

=
1

1
0U  , (19) 

 τλ −= 10  , (20) 

and 

 
µ

τ
=0P  , (21) 

in agreement with Forrestal et al. (4). 

Proceeding along these same lines (next consider terms of order ε, etc.), one can calculate V0, V1, 
V2, V3, and the corresponding U, P, and λ values.  The method is straight forward but tedious.  
The final equations, to the third order, are 

 3
3

2
2

10 VVVVV εεε +++=  , (22) 

 3
3

2
2

10 UUUUU εεε +++=  , (23) 

 3
3

2
2

10 λελεελλλ +++=  , (24) 

and 
 3

3
2

2
10 PPPPP εεε +++=  , (25) 

where  

 ΠΘ ln1 =V  ,  

 [ ]222
2 ln

2
111ln ΠΘ

Π
ΠΩΘ −⎥⎦

⎤
⎢⎣
⎡ −+=V  ,  

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−++−= 3

lnln
2
1ln21

22
22

2
ln 32

2

22
2

2

2
3

3 CV
Π
ΠΩΠΠΩ

Πµ
α

µ
αΩΩ

Π
ΩΠΨΘ  ,  

 [ ]αΠ
µ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ln1

1U  ,  

 ( ) ( )2
3

2

2
2

2 1
2

ln1
1

µ
µ
αΠµ

µ
α

µ
−+++

+
=

V
U  ,  

 ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−⎟

⎠
⎞

⎜
⎝
⎛ −−+−

+
= Ωµ

µ
α

Π
ΩΠαΩΠ

µ
Θα

µ

2
1

2
1ln

2
3

2
5

2
3

2

2ln32

1
3

3

V
U  ,  

 [ ]ΠΠΩτΘλ ln1 +=  ,  
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 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−−=

2

2
2

22
2

2 ln
2
1ln2ln

22
33 λΠΠΠΩΠΠΩΠ

µ
α

µ
α

µ
αΘλ C  ,  

 ( ) ( ) ( )
3

32
223

3 2
ln

2
ln

2
lnlnln

2
7

λ
ΠΠ

Π
ΩΠΩΓΠΠΦΠΠΣΠΠΩΘλ C+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−+++−=  ,  

 ( )[ ]ΠΠατ
µ

Θ
ln11 ++−=P  ,  

 ( ) 2
2

222

2 ln
2
1ln2ln

2
2

2
3 PCP +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−++= ΠΠΠΠ

µ
ααΠΩΠ

µ
α

µ
ααα

µ
Θ  ,  

 ( ) ( ) ( ) 3
322

223

3 ln
2
1ln

2
lnln

2
ln

2 PCP +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−++++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ΠΠΠΩΠΠδΠϑ

Π
ΩΠΠωΠΩξ

µ
Θ  ,  

and  

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−−=

22

23
2

254
µ

α
µ

α
µ
αΨ  ,  

 τΠ −=1  ,  

 
( )
µ
µ

Θ
+

=
1  ,  

 
µ
αΩ −=1  ,  

 ( )µ
µ
αΩΩ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= 1

2
12

2
3

22

3C  ,  

 
2
1

22
7 22

+−=
µ

αΩΣ  ,  

 
µ
αΩΩΦ

2
2 2452 −++=  ,  

 ( )2
3

32
2 1

22
557

2
5

−++−−−= µ
µ
α

µ
αΩΩΓ  ,  

 ( )2
2

322
2 1

22
35

2
9734 µ

µ
ααα

µ
αΩΩξ −−−−+−−−=  ,  

 
2

3
2

336
2
7 22 ααΩΩαΩω +++++=  ,  
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2
1

2
3

2
5 22

+−++=
µ
ααΩΩϑ  , 

 ( )αΩδ +−−= 1
2
32  ,  

 
2

22

2 22
33

µ
α

µ
α

µ
α

λ +−−=C  ,  

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−++= 2

3

322
3

3
1

22
55

2
13

2
5 µ

µ
α

µ
αΩΩΘλC  ,  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−++−=

µ
α

µ
ααα

µ
Θ

2
2

2
3

222

2PC  ,  

and 

 
µ
ξΘ 3

3 =PC  .  

The normalization scheme used is deemed appropriate for ballistic applications, namely tungsten 
rods penetrating steel.  The third-order solution for U, V, P, and λ, with comparison to the exact 
Alekseevski-Tate equation solution, is shown in figures 1–3.  In this case, Vi = 2 km/s, L = 0.5 m, 
ρP = 17,600 kg/m3, YP = 1.0 GPa, ρT = 7,800 kg/m3, and RT = 5.5 GPa.  The perturbation 
parameter computes as ε = 0.0142, which is much less than one and terms with a coefficient of ε4 
were neglected.  The agreement is excellent up to about 495 µs for the velocities and nearly 
identical for the rod length and penetration.  The exact (Tate) solution terminates at about 
518 µs.  The appendix lists the FORTRAN program used to calculate the rod velocity, 
penetration velocity, rod length, and penetration all as a function of time. 

A few comments are in order.  All equations contain a term like ln(1-τ).  Thus, a singularity 

occurs at  1=τ or ( )1
625.5 s

+
= = µ

i

L µ
t

µV
 for the case described.  Thus, t must be less than this 

value for the perturbation solution to be evaluated.  As this singularity is approached, deviation 
from the exact solution occurs.  Hence, one can accurately calculate the perforation of finite 
thickness targets if the penetration time is less than this value.   As an example, figures 4–6 plot 
the rod velocity, penetration velocity, penetration, and rod length for a tungsten rod impacting a 
finite-thickness (25 mm) steel plate as described, except the initial rod length was 39.12 mm.  
The first-order and third-order perturbation theories are compared with the Tate solution.  Again, 
the agreement is excellent.  Note that the first-order perturbation theory also agrees very well 
with the exact solution for this case.  Thus, approximate formulae may be derived for the 
perforation of thin plates.  The first order equations are 

 ΠΘε ln1+=V   , (26) 
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Figure 1.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a tungsten rod impacting a steel target at an impact velocity of 2000 m/s.  The initial 
rod length was 0.500 m. 

 [ ]αΠ
µ
ε

µ
−+

+
= ln

1
1U  , (27)  

 ( )[ ]ΠΠΠΩΘεΠλ ln1 +−+=  ,  (28) 

and 

 ( )( )[ ]ΠΠαΠ
µ
Θε

µ
Π ln111

++−−
−

=P  . (29) 

When P=H, the finite target plate thickness, equation 29 can be solved for the event duration in 
terms of Π  as 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

−
= 1111exp α

Π
Π

µ
Π

Π
Π

L
H

A
 and 

µ
Θε

=A  . (30) 
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Figure 2.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a tungsten rod impacting a steel 
target at an impact velocity of 2000 m/s.  The initial rod length was 0.500 m. 

Further, the exponential term in equation 30 may be approximated by the first two terms of its 
series expansion or exp[x] = 1 + x.  In this case, 

 
2

42 CBB ++
=Π  where α+= 2B –

µA
1  and ( )11

+−+−= α
µAAL

HC  . (31) 

From equation 31, the time, t, was 25.34 µs and the time calculated from the more exact 
equation 30 via standard iteration techniques was 25.12 µs.  The rod velocity was 1948.156 m/s 
according to the approximate theory and 1943.000 m/s from the Tate solution.  The penetration 
velocity was 977.524 m/s vs. 976.500 m/s from the Tate solution.  The final rod length was 
14.20 mm vs. 14.70 mm from the Tate solution.  This close agreement means that the 
perturbation solution is in excellent agreement with the Tate solution for small times, even for a 
first-order perturbation solution.  Forrestal et al. (4) also showed good agreement with Tate for 
short times. 
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Figure 3.  Rod length for a first-order perturbation solution, a third-order perturbation solution, and 
the exact Tate solution.  This case is for a tungsten rod impacting a steel target at an 
impact velocity of 2000 m/s.  The initial rod length was 0.500 m. 

As previously mentioned, the perturbation parameter must be much less than one.  The value of ε 
used in the above equations implies a small penetrator strength or 

iPP

2Y << ρ V .  If this is not the 

case, for example, for a soft target, i.e., small RT, the equations can be normalized with 

 iVvV = ,  iVuU = ,  Ll=λ , L
pP =  , (32) 

 PT ρρµ =2 , 
L

Vi⎟
⎠

⎞
⎜
⎝

⎛
+

=
µ

µ
β

1
,  

T

Tp

R

RY −
=α ,  2

iP

T

V

R

ρ
ε = ,  tβτ =  , (33) 

and the equation set becomes 

 ( ) 222 2 UUV µαε =+−  , (34) 
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Figure 4.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a tungsten rod impacting a 25-mm-thick steel target at an impact velocity of 
2000 m/s.  The initial rod length was 0.03912 m. 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=

T

p

R
Y

d
dV

µ
µ

λ
ε

τ
1  , (35) 

and 

 ( )VU
d
d

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

µ
µ

τ
λ 1  . (36) 

This is very similar to the previous set of equations and thus follows the same solution scheme. 

Note that the normalization scheme was initiated by dividing the first equation by ρp and defining 
µ2 to be ρT/ρP.  Alternately, one could divide the equation by ρT and define µ2 to be ρP/ρT. 

Other normalization schemes are possible namely if the nondimensional variables are defined as 

 Ll=λ , PT ρρµ = , 
P

PY
K

ρ
= , 

P

PT YR

ρ

)(2 −
=Σ  , (37) 
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Figure 5.  Penetration depth for a first-order perturbation solution, a third-order perturbation solution, 
and the exact Tate solution.  This case is for a tungsten rod impacting a 25-mm-thick steel 
target at an impact velocity of 2000 m/s. The initial rod length was 0.03912 m. 

 ΣvV = ,  ΣuU = ,  Σλ l= ,  L
t Στ = , L

pP = . (38) 

Note that Σ > 0 is required. Based on input, if this is not the case, one may reformulate Σ as 

T

Tp RY

ρ

)(2 −
.  

The equation set becomes 

 ( ) 122 +=− UVU µ , (39) 

 VU
d
d

−=
τ
λ , and (40) 

 
)(2 PT

P

YR
YKV

d
d

−
−=−=

Στ
λ   or  

λ
ε

τ
=d

dV  , (41) 
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Figure 6.  Rod length for a first-order perturbation solution, a third-order perturbation solution, 
and the exact Tate solution.  This case is for a tungsten rod impacting a 25-mm-thick 
steel target at an impact velocity of 2000 m/s.  The initial rod length was 0.03912 m. 

where 
)(2 PT

P

YR
YK
−

−=−=
Σ

ε  is chosen to be the perturbation parameter. Again, the previous set of 

equations is very similar to the original set of equations and thus follows the same solution 
scheme.  The normalization scheme or equation set chosen will depend on the input conditions 
(known initial values) and the requirement to keep ε << 1.  Also, it is advantageous to make the 
time where the logarithmic singularity occurs (τ = 1) as large as possible.  

2. Parametric Studies  

Other rod-target configurations were studied using the third-order perturbation theory in order to 
exercise the model.  In figure 7, the rod velocity and penetration velocity are plotted vs. time for 
the Tate solution, the first-order, and the third-order perturbation theory.  In this case, the initial 
rod velocity was 3 km/s.  The agreement between the third-order perturbation model and the  
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Figure 7.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a tungsten rod impacting a steel target at an impact velocity of 3000 m/s.  The 
initial rod length was 0.500 m. 

Tate solution is excellent, due to the perturbation parameter ε = 0.0063, being small.  The length 
and penetration are also in excellent agreement, as shown in figures 8 and 9.  The input, namely 
the strength terms, was obtained from Dr. Steven Segletes of ARL for the tungsten rod vs. the 
RHA target. 

Next, figures 10–12 plot the velocities, penetration, and rod length vs. time for the case studied 
by Forrestal et al. (4), namely a steel rod impacting a geological (silica-sand) target.  The first-
order solution, third-order solution, and the Tate solution are compared.  The perturbation 
parameter was 0.0192 and the improvement of the third-order solution over the first-order 
solution is shown.  The Tate solution completes the penetration process at 56 µs.  The first-order 
solution agrees, within 1%, up to 29 µs, which is the Forrestal et al. (4) solution.  The third-order 
solution is valid, again within 1%, to 35 µs.  
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Figure 8.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a tungsten rod impacting a steel 
target at an impact velocity of 3000 m/s.  The initial rod length was 0.500 m. 

As mentioned previously, the strength terms for the steel targets were obtained from Dr. 
Segletes.  Input values used by Edward Horwath of ARL were penetrator strengths of 3.6 GPa 
for tungsten, 3.2 GPa for depleted uranium (DU), and the target resistance was 5.1 GPa for RHA.  
All input values used in this study are recorded in table 1.  These tungsten values, and the value 
previously given for the RHA target, are designated as 93% tungsten (the only difference in the 
two tungstens is the value assigned to Yp) and the plots are shown in figures 13–15 for an initial 
rod velocity of 2 km/s.  Again, the agreement is good.  The Tate solution indicates that the 
penetration process is complete at 652 µs and the third-order solution is valid up to 598 µs.  
Figures 16–18 present the same plots for an initial impact velocity of 3 km/s.  In this case, again 
because of the lower value of the perturbation parameter, the agreement is excellent.  The Tate 
solution terminates at 428 µs and the third-order theory is valid up to 409 µs.  The perturbation 
parameter was 0.0511 for the 2 km/s case and 0.0227 for the 3 km/s case.  Table 2 lists the 
perturbation parameters for all cases.  Finally, figures 19–21 give the plots for an initial velocity 
of 2 km/s for a DU rod impacting RHA.  The agreement is good, with the Tate solution 
terminating at 640.5 µs and the third-order solution valid up to 611 µs.  The agreement is perfect 
for the same rod/target configuration at an initial impact velocity of 3 km/s, see figures 22–24.   
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Figure 9.  Rod length for a first-order perturbation solution, a third-order perturbation solution, 
and the exact Tate solution.  This case is for a tungsten rod impacting a steel target at 
an impact velocity of 3000 m/s.  The initial rod length was 0.500 m. 

Here, the perturbation parameter was 0.0430 for the 2 km/s case and 0.0191 for the 3 km/s case.  
All input and perturbation values are summarized in tables 1 and 2. 
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Figure 10.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a steel rod impacting a silica-sand target at an impact velocity of 3000 m/s.  The 
initial rod length was 0.03912 m. 
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Figure 11.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a steel rod impacting a silica-
sand target at an impact velocity of 3000 m/s.  The initial rod length was 0.03912 m. 
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Figure 12.  Rod length for a first-order perturbation solution, a third-order perturbation solution, and 
the exact Tate solution.  This case is for a steel rod impacting a silica-sand target at an 
impact velocity of 3000 m/s.  The initial rod length was 0.03912 m. 

Table 1.  Material input properties. 

Material ρP 
(kg/m3) 

ρT 
(kg/m3) 

YP 
(GPa) 

RT 
(GPa) 

Tungsten 17600 — 1.000 — 
93% tungsten 17600 — 3.600 — 
Depleted uranium (DU) 18600 — 3.200 — 
Steel (RHA) — 7800 — 5.500 
Steel (RHA) for 93% tungsten — 7800 — 5.100 
Forrestal penetrator (steel) 8000 — 1.380 — 
Forrestal target (silica-sand) — 1700 — 0.000 
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Figure 13.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a 93% tungsten rod impacting a steel target at an impact velocity of 2000 m/s.  The 
initial rod length was 0.500 m. 
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Figure 14.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a 93% tungsten rod impacting a 
steel target at an impact velocity of 2000 m/s.  The initial rod length was 0.500 m. 
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Figure 15.  Rod length for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a 93% tungsten rod 
impacting a steel target at an impact velocity of 2000 m/s.  The initial rod length 
was 0.500 m. 
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Figure 16.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a 93% tungsten rod impacting a steel target at an impact velocity of 3000 m/s.  The 
initial rod length was 0.500 m. 
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Figure 17.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a 93% tungsten rod 
impacting a steel target at an impact velocity of 3000 m/s.  The initial rod length 
was 0.500 m. 
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Figure 18.  Rod length for a first-order perturbation solution, a third-order perturbation solution, 
and the exact Tate solution.  This case is for a 93% tungsten rod impacting a steel 
target at an impact velocity of 3000 m/s.  The initial rod length was 0.500 m. 

 

Table 2. Initial values and perturbation parameters. 

Penetrator Target Lo 
(m) 

Vi 
(m/s) 

ε 

Tungsten Steel (RHA) 0.500 2000 0.0140 
Tungsten Steel (RHA) 0.500 3000 0.0063 
93% tungsten Steel (RHA) 0.500 2000 0.0511 
93% tungsten Steel (RHA) 0.500 3000 0.0227 
Depleted uranium (DU) Steel (RHA) 0.500 2000 0.0430 
Depleted uranium (DU) Steel (RHA) 0.500 3000 0.0191 
Forrestal steel Silica-sand 0.039 3000 0.0192 
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Figure 19.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This 
case is for a depleted uranium rod impacting a steel target at an impact velocity of 
2000 m/s.  The initial rod length was 0.500 m. 
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Figure 20.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a depleted uranium rod 
impacting a steel target at an impact velocity of 2000 m/s.  The initial rod length 
was 0.500 m. 
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Figure 21.  Rod length for a first-order perturbation solution, a third-order perturbation solution, 
and the exact Tate solution.  This case is for a depleted uranium rod impacting a steel 
target at an impact velocity of 2000 m/s.  The initial rod length was 0.500 m. 
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Figure 22.  Comparison between rod and penetration velocities for a first-order perturbation 
solution, a third-order perturbation solution, and the exact Tate solution.  This case is 
for a depleted uranium rod impacting a steel target at an impact velocity of 3000 m/s.  
The initial rod length was 0.500 m. 
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Figure 23.  Penetration depth for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a depleted uranium rod 
impacting a steel target at an impact velocity of 3000 m/s.  The initial rod length was 
0.500 m. 
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Figure 24.  Rod length for a first-order perturbation solution, a third-order perturbation 
solution, and the exact Tate solution.  This case is for a depleted uranium rod 
impacting a steel target at an impact velocity of 3000 m/s.  The initial rod 
length was 0.500 m.   

3. Conclusions 

A perturbation solution of the Alekseevski-Tate equations was obtained through the third order.  
Agreement with the exact solution is excellent for a tungsten rod impacting a steel target at a 
velocity of 2.0 km/s, as well as for other cases of interest to ballisticians involved in the 
penetration of steel targets.  Also, the velocities and residual length of a tungsten rod perforating 
a finite-thickness steel plate show excellent agreement with the exact equations.  The 
approximate (perturbation) solution yields the dependent variables (V, U, λ, and P) as explicit 
functions of time.  Also, alternate forms of the normalization of the pertinent equations are 
investigated to obtain a perturbation parameter much less than one for various penetration 
problems depending on the input conditions, namely target and penetrator densities, strengths, 
and initial impact conditions.  Also, comments are made regarding the singularity in time.  
Extensions of the method to higher orders (i.e., the fourth order) are possible, but a point of 
diminishing returns has been reached.  The current third-order solution is expressible as an 
algebraic equation, amenable to a spread sheet or simple calculator evaluation. 
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Appendix.  FORTRAN Computer Program 

!  Pertubation.f90  
! 
!  FUNCTIONS: 
!  Pertubation      - Closed-form equations for Tate's model from a pertubation analysis. 
! 
 
!*************************************************************************************! 
!  PROGRAM: Pertubation 
! 
!  PURPOSE:   This program calculates the rod velocity, penetration velocity, penetration 
!  depth, and instantaneous length using pertubation method up to the third-order  
!  correction terms. 
! 
!************************************************************************************* 
 
 program Pertubation 
 
 implicit none 
 
 ! Indentifiers 
 ! RT:   Strength resistance of target (Kg/m.s^2) 
 ! RHO_P:   Density of penetrator (Kg/m^3) 
 ! RHO_T   Density of target (Kg/m^3) 
 ! YP:   Flow stress of penetrator (Pa) 
 ! VI:   Impact velocity (m/s) 
 ! VR:   Rod velocity (m/s) 
 ! UP:   Penetration velocity (m/s) 
 ! LO:   Original length of penetrator (m) 
 ! LI:   Instantaneous length of rod (m) 
 ! P:   Penetration Depth (m) 
 ! T:   Time (microsecond) 
 ! VN:   Normalized rod velocity 
 ! UN:   Normalized penetration velocity 
 ! PD:   Normalized penetration depth  
 ! LAMDA:  Normalized length 
 ! TAU:   Normalized time 
 ! MHU:   Dimensionless variable 
 ! BETA:   Dimensionless variable 
 ! ALPHA:  Dimensionless variable 
 ! EPSI:   Dimensionless variable 
 ! A,B:   Expressions used for equation compactness 
 
 
DOUBLEPRECISION RT, RHO_P, RHO_T, YP, VI, VR, UP, LO, LI, P, PD, T, VN, UN, LAMDA, TAU, 
MHU, BETA, ALPHA, EPSI, V0, U0, LAMDA0, PD0, V1, U1, LAMDA1, PD1, V2, U2, LAMDA2, PD2, V, U,  
C0, C1, C2, C3, V3, U3, PD3, LAMDA3, THK, A, B 
 
 INTEGER:: ORDER 
    
 ! Input values for velocity, length, and material constants 
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 PRINT*, "Enter impact velocity of penetrator, 'Meters per Second'" 
 READ*, VI 
  
 PRINT*, "Enter original length of penetrator, 'Meters'" 
 READ*, LO 
  
 PRINT*, "Enter density of penetrator material, 'Kilograms per Meter Cubed'" 
 READ*, RHO_P 
  
 PRINT*, "Enter density of target material, 'Kilograms per Meter Cubed'" 
 READ*, RHO_T 
  
 PRINT*, "Enter flow stress of penetrator material, 'Pascals'" 
 READ*, YP 
 
 PRINT*, "Strength resistance of target, 'Pascals'" 
 READ*, RT 
 
 ! Check for data inconsistencies 
 ! The "strength resistance of the target (RT)," cannot be equal to the "flow stress of the  
 ! penetrator (YP)," for the pertubation solution to be meaningful. 
 
 IF(RT.EQ.YP)THEN 
 
 PRINT*, "*****RT must not equal YP for a meaningful pertubation solution.*****" 
 
 STOP 
 
 ENDIF 
 
 PRINT*, "Thickness of the target, 'Meters'" 
 
 READ*, THK 
 
 ! Assume a semi-infinite plate for zero thickness. 
 
 IF(THK.EQ.0)THEN 
  THK=1 
 
 ENDIF 
 
 PRINT*, "What order pertubation solution do you require" 
 
 READ*, ORDER 
 
 OPEN(UNIT=12, FILE="Pertubation.dat", STATUS="OLD") 
  
 ! Normalization scheme 
 
 MHU=SQRT(RHO_T/RHO_P) 
 
 BETA=MHU/(1.0+MHU)*VI/LO 
 
 ALPHA=(RT-YP)/YP 
 
 EPSI=YP/(RHO_P*VI**2) 
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 A=(1.0+MHU)/MHU 
 
 B=1.0-ALPHA/MHU 
 
 T=0.0 
 
 DO 
 
  TAU=BETA*T 
 
! Zero order calculation resulting from pertubation analysis 
 
  V0=1.0 
 
  U0=1.0/(1.0+MHU) 
 
  LAMDA0=1.0-TAU 
 
  PD0=TAU/MHU 
 
! First order calculation resulting from pertubation analysis 
   
 V1=((1.0+MHU)/MHU)*LOG(1.0-TAU) 
 
 U1=(1.0/MHU)*(LOG(1.0-TAU)-ALPHA) 
 
 LAMDA1=((1.0+MHU)/MHU)*((1.0-ALPHA/MHU)*TAU+(1.0-TAU)*LOG(1.0-TAU)) 
 
 PD1=-(1.0+MHU)/(MHU**2)*(TAU*(ALPHA+1.0)+(1.0-TAU)*LOG(1.0-TAU)) 
 
! Second order calculation resulting from pertubation analysis 
 
 V2=((1.0+MHU)/MHU)**2*(1.0-ALPHA/MHU)*(LOG(1.0-TAU)+1/(1.0-TAU)-1.0)- & 
 0.5*(((1.0+MHU)/MHU)**2)*(LOG(1.0-TAU))**2 
 

U2=V2/(1.0+MHU)+(ALPHA/MHU**2)*(1.0+MHU)*LOG(1.0-TAU)+(ALPHA**2)*(1.0-& 
MHU**2)/(2.0*MHU**3) 

 
 C0=3.0-3.0*ALPHA/MHU+ALPHA**2/(2.0*MHU**2)-ALPHA**2/(2.0*MHU) 
   

LAMDA2=((1.0+MHU)/MHU)**2*(-(3.0-3.0*ALPHA/MHU+ALPHA**2/(2.0*MHU**2)-& 
ALPHA**2/(2.0*MHU))*(1-TAU) +(1.0-ALPHA/MHU)*LOG(1.0-TAU)+2.0*(1.0-& 
ALPHA/MHU)*(1.0-TAU)*LOG(1.0-TAU)-0.5*(1.0-TAU)*  (LOG(1.0-TAU))**2+C0) 

 
PD2=(1.0+MHU)**2/MHU**3*(B*(1.0-2.0*TAU-(1.0-TAU)*LOG(1.0-TAU)-LOG(1.0-& TAU))+(1.0-
TAU)/2.0*(LOG(1.0-TAU))**2-(1.0-TAU)*LOG(1.0-TAU)+1.0-& TAU+ALPHA*(1.0-TAU-(1.0-
TAU)*LOG(1.0-TAU))+ ALPHA**2*(1.0-& MHU)*TAU/(2.0*MHU)-(2+ALPHA-ALPHA/MHU)) 

 
! Third order calculation resulting from pertubation analysis 
 
 C1= -3.0/2.0*B**2-2.0*B+ALPHA**2/(2.0*MHU)*(1.0-1.0/MHU) 
   

V3=A**3*((4.0-5.0*ALPHA/MHU-ALPHA**2/(2.0*MHU)+3.0*ALPHA**2/(2.0*MHU**2))& 
*LOG(1.0-TAU)-0.5*B**2*1.0/(1.0-TAU)**2+(2.0*B+2.0*B**2-ALPHA**2/(2.0*MHU)+ & 



 34

ALPHA**2/(2.0*MHU**2))*1.0/(1.0-TAU)-2.0*B*(LOG(1.0-TAU))**2+0.5*(LOG(1.0-& TAU))**3-
B*(LOG(1.0-TAU))/(1.0-TAU)+C1) 

 
 U3=(V3*(V0-U0)+(V1-U1)*(V2-U2)-MHU**2*U1*U2)/((V0-U0)+U0*MHU**2) 
 

C2=(1.0+MHU)**3/MHU**4*(-4.0-7.0/2.0*B**2-7.0*B+9.0/2.0*ALPHA**2/MHU-& 5.0*ALPHA-
3.0*ALPHA**2/2.0-ALPHA**3/(2.0*MHU**2)*(1.0-MHU)**2+B**2/2.0) 

 
PD3=-(1.0+MHU)**3/MHU**4*((1.0-TAU)*(-4.0-7.0/2.0*B**2-7.0*B+9.0/2.0*& ALPHA**2/MHU-
5.0*ALPHA-3.0*ALPHA**2/2.0-ALPHA**3*&  
(1.0-HU)**2/(2.0*MHU**2)) +(1.0-TAU)*LOG(1.0-TAU)*(7.0/2.0+6.0*B+& 
+3.0*ALPHA*B+3.0*B**2/2.0+ALPHA+3.0*ALPHA**2/2.0)+B**2/(2.0*(1.0-TAU)) & 
+(B+5.0/2.0*B**2+ALPHA-3.0*ALPHA**2/(2.0*MHU)+1.0/2.0)*LOG(1.0-TAU)+(1.0-& 
TAU)*(LOG(1.0-TAU))**2*(-2.0*B-3.0/2.0*(1.0+ALPHA))-B/2.0*(LOG(1.0-TAU))**2+(1.0-& 
TAU)/2.0*(LOG(1.0-TAU))**3)+C2 

 
C3=((1+MHU)/MHU)**3*(5.0/2.0+13.0/2.0*B**2+5.0*B-5.0*ALPHA**2/(2.0*MHU)-& 
ALPHA**3/(2.0*MHU**3)*(MHU-1)**2) 

 
LAMDA3=((1+MHU)/MHU)**3*((-7.0*B/2.0)*(1.0-TAU)*(LOG(1.0-TAU))**2+(7.0*& B**2/2.0 -
ALPHA**2/(2.0*MHU)+1.0/2.0)*LOG(1.0-TAU) -B/2.0*(LOG(1.0-TAU))**2& +(2.0+5.0*B+4*B**2-
2*ALPHA**2/MHU)*(1.0-TAU)*LOG(1.0-TAU)+(-5.0/2.0-7.0*B**2&  
-5.0*B+5.0*ALPHA**2/(2.0*MHU)+ALPHA**3/(2.0*MHU**3)*(MHU-1)**2)& 

 *(1.0-TAU)+B**2/(2.0*(1.0-TAU))+(1.0-TAU)/2.0*(LOG(1.0-TAU))**3)+C3 
 
! Summation of series for 1st order, 2nd order, and 3rd order pertubation solution 
 
  IF(ORDER.EQ.1)THEN 
   
   V=V0+EPSI*V1 
 
   U=U0+EPSI*U1 
 
   LAMDA=LAMDA0+EPSI*LAMDA1 
 
   PD=PD0+EPSI*PD1 
 
  ELSEIF(ORDER.EQ.2)THEN 
 
   V=V0+EPSI*V1+(EPSI**2)*V2 
 
   U=U0+EPSI*U1+(EPSI**2)*U2 
 
   LAMDA=LAMDA0+EPSI*LAMDA1+(EPSI**2)*LAMDA2 
 
   PD=PD0+EPSI*PD1+(EPSI**2)*PD2 
 
  ELSEIF(ORDER.EQ.3)THEN 
 
   V=V0+EPSI*V1+(EPSI**2)*V2+(EPSI**3)*V3 
 
   U=U0+EPSI*U1+(EPSI**2)*U2+(EPSI**3)*U3 
 
   LAMDA=LAMDA0+EPSI*LAMDA1+(EPSI**2)*LAMDA2+(EPSI**3)*LAMDA3
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   PD=PD0+EPSI*PD1+(EPSI**2)*PD2+(EPSI**3)*PD3 
  ENDIF 
 
! Converting normalized values into actual values 
 
  VR=V*VI 
 
  UP=U*VI 
 
  P=PD*LO 
 
  LI=LAMDA*LO 
 
! Penetration process stop conditions 
 
! For RT > YP, the minimum rod velocity required to achieve penetration occurs when the penetration 
! velocity is zero (UP = 0).  At this point the target begins to behave as a rigid body and the rod 
! bounces off the target. 
 
  IF(RT.GT.YP.AND.VR.LE.SQRT(2.0*(RT-YP)/RHO_P))EXIT 
   
! For RT < YP, the minimum rod velocity required to achieve penetration occurs when the penetration 
! velocity is equal to the rod velocity (UP = VR).  At this point the rod begins to behave as a  
! rigid body. 
 
  IF(RT.LT.YP.AND.VR.LE.SQRT(2.0*(YP-RT)/RHO_T))EXIT 
 
! If the penetration is greater than the thickness of the target, perforation is achieved terminate 
! loop 
             
                
  IF(P.GT.THK)EXIT  
 
! If the instantaneous length is less than zero, then the rod had totally eroded, Terminate Loop 
 
  IF(LI.LT.0.0)EXIT  
 
! Output data for graphical processing 
 
  WRITE(12, 100), T, VR, UP, P, LI 
 
 
100  FORMAT(F10.7, 5X, F15.10, 5X, F15.10, 5X, F10.8, 5X, F10.8) 
 
! Time increment, 1 microsecond step size 
 
  T=T+0.000001  
     
 END DO 
 
 PRINT*, EPSI 
 
 END PROGRAM Pertubation 
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